

UNIVERSIDAD SIMÓN BOLÍVAR

DIVISIÓN	CIENCIAS FÍSICAS Y MATEMÁTICAS			
DEPARTAMENTO	PROCESOS Y SISTEMAS			
ASIGNATURA	SISTEMAS DE CONTROL II (PS2323)			
HORAS/SEMANA	Т3	P1	L2	UC4
VIGENCIA	DESDE SEPTIEMBRE 2002			
REQUISITO	PS2322			

OBJETIVO GENERAL

El objetivo principal de la asignatura es la de introducir al estudiante a los conceptos básicos de los sistemas de control.

PROGRAMA

- 1) Controladores industriales y ajuste empírico
 - a) Controlador proporcional (P)
 - b) Controlador proporcional integral (PI)
 - c) Controlador proporcional derivativo (PD)
 - d) Controlador proporcional integral derivativo (PID)
 - e) Sintonización empírica de controladores PID (Ziegler Nichols, Cohen Coon)
- 2) Diseño de sistemas de control usando el lugar geométrico de las raíces
 - a) Controlador por atraso
 - b) Controlador proporcional integrar (PI)
 - c) Controlador por adelanto
 - d) Controlador proporcional derivativo (PD)
 - e) Controlador por adelanto atraso
 - f) Controlador proporcional integral derivativo (PID)
- 3) Diseño de Sistemas de Control usando respuesta frecuencial (giagrama de Bode y diagrama de Nichol)
 - a) Controlador por atraso
 - b) Controlador proporcional integrar (PI)
 - c) Controlador por adelanto
 - d) Controlador proporcional derivativo (PD)
 - e) Controlador por adelanto atraso
 - f) Controlador proporcional integral derivativo (PID)
- 4) Diseño de sistemas de control en el espacio de estado
 - a) Observabilidad
 - b) Controlabilidad
 - c) Realimentación lineal de las variables de estado
 - d) Estimadores de estados de orden completo

- 5) Diseño básico de sistemas de control digital
 - a) Representación de estados
 - b) Introducción al control por computador
 - c) Diseño de compensadores, métodos clásicos: PID, predictor de Smith, Dahlin.
 - d) Implementación de un control digital sobre un sistema.
- 6) Estudio de esquemas avanzados de control
 - a) Controlador alimentación adelantada
 - b) Controlador en cascada
 - c) Controlador por relación

BIBLIOGRAFÍA

- 1) Ogata, K. "Modern Control Engineering", 3ra. Ed., Prentice-Hall, 1997.
- 2) Phillips, C. y R. Harbor, "Feedback control systems", 3ra. Ed., Prentice-Hall, 1996.
- 3) Kuo, B., "Automatic Control Systems". 7ma. Ed., Prentice-Hall. 1995.
- 4) Dorf, R. y R. Bishop, "Modern Control Systems", 7ma. Ed., Adisson-Wesley, 1995.